





# **BWFS/CS Technical Workshop #2**

Technical Session B1:
Hydrologic and Hydraulic Modeling Tools
Overview

October 23, 2013

## Objectives to be evaluated by H&H tools

#### **Objective Topic**

- 1. People and Property at Risk
  - 1a. Urban Flood Protection
  - 1b. Small Community Flood Risk Reduction
  - 1c. Rural-agricultural Area Flood Risk Reduction
- 2. Flood System Flexibility
- 3. Flood System Resiliency
- 4. Wise Floodplain Management
- **5. Ecosystem Processes**

**PUBLIC SAFETY** 

5a. Inundated Floodplain

15. Integrated Water Management





**ECONOMIC STABILITY** 

## **H&H Tools Used for Defining the Flood Hazard**

- The floodplain stage frequency curves are a function of:
  - Unregulated flow-frequency curves
  - Unregulated- regulated flows
  - Discharge- channel stage relationships
  - Channel- floodplain stage relationships
- Hydrologic and hydraulic tools are modified to reflect refined system configurations, evaluate changes to the floodplain stage frequency curves





# **Risk Analysis**



# **Risk Analysis: H&H Components**



### Sacramento-San Joaquin Watershed



#### Sacramento River

- At Rio Vista =
   27,000 sq mi.
- 37 reservoirs

#### San Joaquin River

- At Mokelumne River = 20,000 sq mi.
- 36 reservoirs





## **Study Area for System Risk Analysis**

- Sacramento River Basin
  - √ 61 impact areas and index points



## Study Area for System Risk Analysis

- San Joaquin River Basin
  - √ 43 impact areas



## **Modeling Tools and Applications**

- 1) Unregulated flow frequency curves throughout Sac and SJ system, using **Peak FQ/Peak FQSA**
- 2) For "ungaged" watersheds, rainfall-runoff simulation models, using <u>HEC-HMS</u>
- 3) Sac and SJ reservoir simulation model, using <u>HEC-</u> ResSim
- Sac and SJ channel model, using <u>HEC-RAS</u>
- 5) Sac and SJ floodplain model, <u>**FLO-2D** and **TUFLOW**</u>
- 6) Sac and SJ Delta model and bypass model, using <a href="RMA2">RMA2</a>





#### 1) Peak FQ/Peak FQSA: Volume (Unregulated Flow) Frequency



- Represents maximum potential flow to the analysis point.
- "Unregulated time series" not necessarily the same as "full natural flow" or "natural flow."





### 1) Peak FQ/Peak FQSA: Basic Analysis Steps Followed

- Construct unregulated series (or get measured flows).
- Extract annual maximums.
- 3. Inspect series.
- Fit statistical distribution.
- 5. Review fit.
- 6. Review for *regional* consistency.

**PUBLIC SAFETY** 

Adopt frequency curve.







**ECONOMIC STABILITY** 

### 2. HEC-HMS Application

Applied meteorological conditions (e.g., rainfall) Watershed processes Runoff







### 2. HEC-HMS Application

- Develop flow-frequency curves in "ungaged" watersheds.
- "Ungaged" watersheds consist of those with:
  - No historical flow data, or
  - Poor historical flow data
- Model sensitivity of selected headwater watersheds to future climate scenarios:
  - "CVSS (Climate Variability Sensitivity Study) Pilot Study."









# 3. HEC-ResSim Application



### 3. HEC-ResSim: Sacramento System

- 37 reservoirs
   (7 flood control,
   30 headwater).
- 17 diversions.
- 209 junctions.
- 65 inflow locations.
- 162 routing reaches.
- Muskingum routing.



### 3. HEC-ResSim: San Joaquin System

- 36 reservoirs
   (9 flood control,
   27 headwater).
- 17 diversions.
- 205 junctions.
- 74 inflow locations.
- 166 routing reaches.
- Muskingum routing.



### 4. HEC-RAS Application

- Route reservoir releases through the leveed system
- Compute water surface elevations at key locations







## 4. HEC-RAS: Sacramento Model Extents



## 4. HEC-RAS: San Joaquin Model Extents







## 5. Floodplain Models Application

- Compute floodplain elevations when water leaves the channel
- FLO-2D and TUFLOW









### 5. General Floodplain Modeling Approach

- Define floodplain geometry and features.
- Simulate levee breach hydrograph in riverine model. Extract breach hydrograph, put in floodplain model
- Route flow through floodplain, compute floodplain depths and velocities.
- Extract floodplain water surface elevations.







**ECONOMIC STABILITY** 

## 6. RMA2 Bay Delta Model



**PUBLIC SAFETY** 

#### Application:

- Boundary Conditions
- Sea Level Rise Scenarios



22



### 6. RMA2 Lower Sacramento Bypass Model



- Build off of Existing RMA2
   Models:
  - USACE Yolo Bypass Model
  - Sutter Bypass Model
- New 2-D Development:
  - Feather River
  - Fremont Weir, Sac Weir
  - Cache Creek and Putah Creek (Backwater)
- 1-D Channel Elements for Sacramento River





### 6. RMA2 Lower Sacramento Bypass Model: Approach

- Incorporate existing RMA2 models
- Add new 2D grids and 1D channels using CVFED LiDAR and bathymetry
- Friction values based on aerial photography
- Boundary conditions- will use RAS model DSS files
- Model calibration- Jan 2006 event
- Model validation- Jan 1997 event

PUBLIC SAFETY



ECONOMIC STABILITY





### **Summary of H&H Products and Tools**

- CVHS and CVFED have provided a range of datasets, hydrologic and hydraulic models.
- Tools are generalized, flexible, standard of practice, and widely available.
- Tools are independent of study assumptions (fully configurable models).
- Tools will be used to evaluate and compare BWFS refined system configurations.
- Tools and information are well-documented and reviewed.
- Tools and models are available from DWR upon request.













# **Questions?**